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Mathematical problems of electromagnetoelastic interactions

Viatcheslav Priimenko and Mikhail Vishnevskii

abstract: There are studied nonlinear mathematical problems of the interaction
of electromagnetic fields with deformable media. The models are based on combi-
nation of the Lam and Maxwell systems coupled through so-called seismomagnetic
effect. Several direct and associated with them inverse problems are studied. Then
speaking about the inverse problems, electromagnetic and elastic characteristics of
a medium are the subject of reconstruction. The values of physical fields are con-
nected through electromagnetoelastic interactions. We consider the processes which
are observed when elastic waves propagate in an elastic electroconducting medium.
Variations of the seismic and electromagnetic fields in this case are called electro-
magnetoelastic waves. There are described different statements of mathematical
model of the electromagnetoelastic interactions. Then the theoretical results of the
analytical solution are discussed for various nonlinear direct and inverse problems
for the equations of electromagnetoelasticity.

Key Words:Nonlinear boundary value problems; odd-order dispersive differ-
ential equations; existence and uniqueness.
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Introduction

The interaction of electromagnetic fields with deformable media is a subject
of many theoretical and experimental investigations in the field of continuum me-
chanics and geophysics in the recent decades. For description of simple enough
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interactions, the theories of magnetohydrodynamics, [1], electroelasticity, [2], [3],
and magnetoelasticity, [4], [5], [6], were developed. These theories are, basically,
a combination (without introducing new conceptions) of objects and phenomena
considered in continuum mechanics and electrodynamics.

Investigation of more complex electromagnetoelastic interactions in a continu-
ous medium requires to consider complex models. For a more profound acquain-
tance with the modern state of the theory of electromagnetoelastic interactions the
reader is referred to, e.g., [7], [8].

The aim of this paper is to study some nonlinear direct and inverse problems
connected with electromagnetoelastic interactions. The model considered here is
based on a simple variant of combination of the Lamé and Maxwell equations.

Let us give a brief characteristic of basic types of electromagnetoelastic inter-
actions. It is well known that when an electrical-conducting elastic body oscillates
in an electromagnetic field, variations of the electrical and magnetic fields are ob-
served as a result of this motion. Similar processes are also observed when seismic
waves propagate in the Earth’s crust. Variations of seismic and electromagnetic
fields arising in this case are called electromagnetoelastic waves. Such waves contain
a certain information about electromagnetic and elastic parameters of the medium.
In this case, as a rule, the following types of electromagnetoelastic interactions are
distinguished:

a) Interaction based on the electrokinetic effect . It is supposed that generation
of electrical signals with elastic waves propagation is connected precisely with
manifestation of electrokinetic properties of a medium.

b) Interaction based on the piezoelectric effect . This interaction is connected
with propagation of elastic waves in crystal rocks when the elastic deformation
of a lattice substance produces displacement of electrons and, as consequence,
there arises an electrical field induced by such deformations.

c) Interaction based on slow movement of a body in an external electromagnetic
field. Whereas, for example, the electrokinetic effect is connected with local
interactions of elastic waves with a flow in the pore liquid, this effect is based
on slow moving of particles in an external electromagnetic field.

In seismics and seismology the third type of interaction leads to so-called seismo-
magnetic effect describing interaction of seismic waves with the Earth’s magnetic
field. This interaction results in induced electromagnetic waves propagating with
speeds commensurable with the speeds of seismic waves.

1. Mathematical model of electromagnetoelastic interactions

The interaction of electromagnetic fields with deformable media is considered
with point of view of linear elasticity connected with electrodynamic of elastic
moving media by means of motion of particles in the electromagnetic field. We do
not consider any effects of interactions, which could arise as a result of some kind
of relations in constitutive equations besides velocity. We, basically, follow Dunkin



Electromagnetoelastic interactions 57

and Eringen, [4], when defining a mathematical model for electromagnetoelastic
effect.

1.1. Electromagnetic theory. Let R3 be a three-dimensional Euclidean space
of points x = (x1, x2, x3). The process of propagation of electromagnetic waves
in R3 will be described by the following Maxwell system:

∂D

∂t
+ J = rot H,

∂B

∂t
+ rot E = 0,

(1.1.1)

div D = ρe, div B = 0. (1.1.2)

Here E, H, D and B are the electromagnetic vectors, J is the current density, ρe

is the charge density, and all quantities are expressed in the MKS units. When
a medium is at rest, the electromagnetic constitutive equations of an isotropic
medium are

D0 = εE0, B0 = µH0, J0 = σE0, (1.1.3)

where ε, µ are called the electric and magnetic permeabilities and σ is the electrical
conductivity. The same equations are assumed to be valid at each point in the
reference frame moving with the velocity of a material point, i.e. the proper frame,
but they are expressed in terms of the field measured in the laboratory frame in
which motion is observed. For small velocities the proper quantities are related to
the laboratory ones by the equations, see [6]

E0 = E +
∂u

∂t
×B, D0 = D + c−2 ∂u

∂t
×H,

H0 = H − ∂u

∂t
×D, B0 = B − c−2 ∂u

∂t
×E,

J0 = J − ρe
∂u

∂t
, ρ0

e = ρe, c ≡ (ε0µ0)−1/2,

where ε0, µ0 are the dielectric and magnetic permeabilities of the vacuum and
u is the displacement vector. Let us substitute these relations into constitutive
equations (1.1.3). If the terms of order |∂u

∂t |2/c2 and higher are dropped, the
results are as follows, see [6]

D = εE + α
∂u

∂t
×H, α ≡ εµ− ε0µ0,

B = µH − α
∂u

∂t
×E,

(1.1.4)

J = ρe
∂u

∂t
+ σ(E +

∂u

∂t
×B). (1.1.5)

For more details of electromagnetic theory, the reader is referred to many textbooks
that treat this research field, e.g., [7], [9], [10].
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Thus, we have obtained a complete system for freely moving media. They are
Maxwell’s equations (1.1.1)–(1.1.2) and the constitutive relations (1.1.4)–(1.1.5).
Equation (1.1.5) is a modification of Ohm’s law, where appears a term reflecting
the influence of particles moving in the magnetic field with a current density.

The electromagnetic matching conditions are obtained in the following manner.
First rewrite equations (1.1.1)–(1.1.2) in the equivalent form

rot(E +
∂u

∂t
×B) = −∂B

∂t
− ∂u

∂t
div B + rot(

∂u

∂t
×B),

rot(H − ∂u

∂t
×D) =

∂D

∂t
+

∂u

∂t
div D − rot(

∂u

∂t
×D) + J − ρe

∂u

∂t
,

(1.1.6)

div B = 0, div D = ρe. (1.1.7)

Then integral analogues of these equations can be obtained by integrating (1.1.6)
over the surface S′ composed of material particles and bounded by a curve C and
(1.1.7) over a volume V of material particles bounded by the surface S, see Fig. 1.
Note that C, S′, S and V move with the material. After applying Stokes’ theorem
on the left-hand sides of (1.1.6), we obtain

∫

C

(E +
∂u

∂t
×B) · dc = − d

dt

∫

S′
B · ds′,

∫

C

(H − ∂u

∂t
×D) · dc =

d

dt

∫

S′
D · ds′ +

∫

S′
(J − ρe

∂u

∂t
) · ds′,

(1.1.8)

Applying the Gauss-Ostrogradskii theorem to (1.1.7) yields:
∫

S

B · ds = 0,

∫

S

D · ds =
∫

V

ρedx,

(1.1.9)

where we have also used the well-known relation

d

dt

∫

S′
F · ds′ =

∫

S′
[
∂F

∂t
+

∂u

∂t
div F − rot(

∂u

∂t
× F )]ds′.

Select S′ to be a small rectangular area oriented perpendicular to the discontinuity
surface such that one side lies in the part of material with one material properties
and other one lies in the part with another material properties. As the dimension
of S′, perpendicular to the boundary, tends to zero, equations (1.1.8) now look like:

[E +
∂u

∂t
×B]t = 0, [H − ∂u

∂t
×D]t = JS

m − ρS
e

∂um

∂t
, (1.1.10)

where the symbol [F ]t means a jump of the tangential components of the vector
F across the surface, where the coefficients of equations have breaks, and JS

m, ρS
e

represent the surface current and the charge, respectively. Here and in the sequel
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the subscripts t,m, n denote the vector components in the directions t, m,n which
form the right-hand orthogonal triad Now, let us choose V to be a small cylindrical
volume whose axis is perpendicular to the discontinuity surface such that one of
the circular ends lies in the part of the material with one material properties and
another one lies in the part with another material properties. As the height of the
volume tends to zero, equations (1.1.9) take the form:

[B]n = 0, [D]n = ρS
e , (1.1.11)

where [F ]n means a jump in the normal component of F .
Equations (1.1.10)–(1.1.11) constitute the complete electromagnetic matching

conditions on a discontinuity surface.

1.2. Elastic theory. Consider now the equations of motion of a deformable
medium. The mechanical equations will be derived by applying the conservation
of momentum to the volume of a material, V , with the bounding surface S in the
absence of a mechanical force, using an assumption that only a mechanical effect
of the electromagnetic fields is the introduction of the Lorentz force

fe = ρeE + J ×B. (1.2.1)

Thus the equation of global conservation of momentum in the rectangular coordi-
nates is the following

∫

S

T · nds +
∫

V

fedx =
d

dt

∫

V

gmdx, (1.2.2)

where T is a stress tensor and gm is momentum per unit volume. Using the Gauss-
Ostrogradskii theorem for the surface integral and differentiation of the volume
integral according to [11, Eq. 20.9],

d

dt

∫

V

gmdv =
∫

V

(
∂gm

∂t
+ Div(gm ⊗ ∂u

∂t
))dx (1.2.3)

we obtain ∫

V

(Div T + fe −Div(gm ⊗ ∂u

∂t
)− ∂gm

∂t
)dx = 0,

where

Div T =
( 3∑

j=1

∂

∂xj
Tij

)3

i=1

. (1.2.4)

If the mechanical momentum is locally conserved, then

Div T + fe = Div(gm ⊗ ∂u

∂t
) +

∂gm

∂t
. (1.2.5)

In an elastic solid gm = ρ∂u
∂t , where ρ is the material density, and the assumption

of infinitesimal strains and rotations (1.2.5) reduces to

ρ
∂2u

∂t2
= Div T + fe. (1.2.6)
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The elastic matching conditions on stress are obtained by applying (1.2.6) to
appropriate differential elements. Introduce Maxwell’s stresses T e and the electro-
magnetic momentum ge according to Minkowski, see [12]

T e = E ⊗D + H ⊗B − 1
2
(E ·D + H ·B)I,

ge = D ×B,
(1.2.7)

where I is the unit matrix of order 3 × 3. Let us show that the Lorentz force fe

can be represented in the following form

fe = Div T e − ∂ge

∂t
. (1.2.8)

It is easy to check the correctness of formula (1.2.8) taking into account equations
(1.1.1)–(1.1.2) and constitutive relations

D = εE, B = µH.

After simple transformations we come to the equation

Div T = ρeE + rot E ×D + rotH ×B.

Using Maxwell’s equations (1.1.1)–(1.1.2) we obtain

Div T = ρeE + J ×B +
∂D

∂t
×B − ∂B

∂t
×D

from which next formula is followed

Div T = ρeE + J ×B +
∂

∂t
(D ×B) = fe +

∂ge

∂t
.

This formula proves the representation (1.2.8).
The volume integral containing fe can be written down as

∫

V

fedx =
∫

S

(T + ge ⊗ ∂u

∂t
) · nds−

∫

V

(
∂ge

∂t
+ Div(ge ⊗ ∂u

∂t
))dx,

where Div(ge⊗ ∂u
∂t ) was added and subtracted, and the Gauss-Ostrogradskii theo-

rem was used to convert the volume integral to the surface one. Using this expres-
sion and (1.2.3) in (1.2.2) gives us

∫

S

(T + T e + ge ⊗ ∂u

∂t
) · nds =

d

dt

∫

V

(gm + ge)dx, (1.2.9)

which is the form appropriated for obtaining the matching conditions on surface
fractions.

Now let S and V be the surface and the volume of a small cylindrical element,
whose axis is perpendicular to the discontinuity surface such that one end of the



Electromagnetoelastic interactions 61

cylinder lies in the part of a material with certain material properties and another
one lies in the part with other material properties (Fig. 1). Applying (1.2.9) to
this cylindrical region and allowing the axial dimension to approach zero, (1.2.9)
becomes

[T + T e + ge ⊗ ∂u

∂t
] · n = 0. (1.2.10)

In the case of a body surrounded by vacuum T = 0 outside the body and (1.2.10)
reduces to

T · n = −[T e + ge ⊗ ∂u

∂t
] · n, on Ω, (1.2.11)

where Ω is the body surface.
The mechanical constitutive equations are taken to be the usual Hook’s Law

for an isotropic elastic medium, i.e.

T = λ tr S · I + 2κS, (1.2.12)

where S is the strain tensor defined by the formula

Sij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3.

In the above formulas, λ,κ are the Lamé coefficients. When using these relations
it is assumed that the stresses and strains for this combined system in proper and
laboratory frames are the same. Due to the fact that the system has been split
to two parts, the mechanical part and the electromagnetic part, as expressed by
the Minkowski energy-momentum tensor, this question needs further consideration.
For the present purposes we simply assume that constitutive relations (1.2.12) for
purely elastic medium are unaffected by the electromagnetic fields. For very large
fields or finite deformations the interaction terms will enter in the constitutive
relations thereby coupling together the elastic and electromagnetic constitutive
equations, see [7].

1.3. Summary of equations and matching conditions. Here we summa-
rize the basic field equations and matching conditions for an electromagnetoelastic
medium.

Field equations

∂D

∂t
+ J = rot H, div D = ρe,

∂B

∂t
+ rotE = 0, div B = 0,

(1.3.1)

ρ
∂2u

∂t2
= Div T + ρeE + J ×B. (1.3.2)
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Constitutive equations

D = εE + α
∂u

∂t
×H, α ≡ εµ− ε0µ0,

B = µH − α
∂u

∂t
×E, J = ρe

∂u

∂t
+ σ(E +

∂u

∂t
×B),

(1.3.3)

T = λ tr S · I + 2κS,

Sij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3.

(1.3.4)

Matching conditions

[E +
∂u

∂t
×B]t = 0, [H − ∂u

∂t
×D]t = JS

m − ρS
e

∂um

∂t
,

[B]n = 0, [D]n = ρS
e ,

(1.3.5)

[T + E ⊗D + H ⊗B − 1
2
(E ·D + H ·B)I + (D ×B)⊗ ∂u

∂t
] · n = 0. (1.3.6)

2. Direct problems

2.1. Basic equations. Consider the case of diffusion approximation of Maxwell’s
system. This means that in field equations (1.3.1)–(1.3.2) we neglect by displace-
ment current ∂D

∂t formally assuming ε = 0, and set ρe = 0. Simultaneously we put
in constitutive equations (1.3.3)–(1.3.4) α = 0 and ρe = 0, too. It is easy to show
that in this case in the presence of external electromagnetic j and elastic f sources
of oscillations we can form the following electromagnetoelasticity system

σE + σµ
∂u

∂t
×H + j = rot H,

µ
∂H

∂t
+ rotE = 0, div µH = 0,

(2.1.1)

ρ
∂2u

∂t2
= Div T + µ rotH ×H + f . (2.1.2)

We make the following assumptions about functions E,H,u, j, f :

E = (0, 1, 0)E(z, t), H = (1, 0, 0)H(z, t), u = (0, 0, 1)u(z, t)
j = (0, 1, 0)j(z, t), f = (0, 0, 1)f(z, t),

(2.1.3)

where the variable z stands to the variable x3. Under such assumptions for the
case ρ = const, µ = const we can form the following non-dimensional model system

ht = (rhz)z − (hut)z − (rj)z, (2.1.4)
utt = (ν2uz)z − phhz + f, (2.1.5)

where h, u, j, f are dimensionless analogues of the functions introduced by formulas
(2.1.3), r−1 = µLV0σ is the magnetic Reynolds number, p = µH2

0ρ−1V −2
0 , ν =√

(λ + 2κ)/ρV 2
0 is dimensionless velocity of the elastic waves propagation; and

L, V0, H0 are characteristic values of length, seismic velocity and magnetic field,
respectively.
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2.2. The problem statement. Weak solutions. Now we can formulate the
direct problem. Let be QT = (t, z) : t ∈ (0, T )× Ω, where Ω = (−l, l).

Direct Problem 2.2.1 Determine a set of the functions

h : QT →R, u : QT → R
such that

ht = (rhz)z − (hut)z − (rj)z, (z, t) ∈ QT , (2.2.1)

utt = (ν2uz)z − phhz + f, (z, t) ∈ QT , (2.2.2)
h(z, 0) = h0(z), z ∈ Ω, , (2.2.3)

u(z, 0) = u0(z), ut(z, 0) = u1(z), z ∈ Ω, (2.2.4)
h(±l, t) = 0, t ∈ (0, T ), (2.2.5)
u(±l, t) = 0, t ∈ (0, T ). (2.2.6)

Here r(z), ν(z) are positive piecewise smooth functions and j(z, t), f(z, t) are piece-
wise smooth functions, discontinuous at the points z = zk, k = 1, 2, . . . , m, −l <
z1 < z2 < · · · < zm < l; p is a positive number.

Direct Problem (2.2.1) can be considered as a diffraction problem, i.e., as the
problem with QT partitioned into several domains Q

(k)
T , Q

(k)
T = Ω(k)×(0, T ), Ω(k) =

(zk, zk+1), k = 0, 1, . . . ,m, z0 = −l, zm+1 = l, in each of which there is given
parabolic-hyperbolic system (2.2.1)–(2.2.2) with smooth coefficients and free terms.
We wish to find in QT a solution of this system satisfying:

• in Q
(k)
T , k = 1, 2, . . . , m, the corresponding equations (2.2.1)–(2.2.2);

• on the lower base of QT the initial conditions (2.2.3)–(2.2.4);

• on the lateral surface of QT the boundary conditions (2.2.5)–(2.2.6);

• at the jump points zk, k = 1, 2, . . . ,m, the following compatibility conditions

[h] = [u] = 0, (2.2.7)

[r(hz − j)] =
[
ν2uz

]
= 0 . (2.2.8)

The symbol [v] denotes the jump of the function v as it passes through zk.
Problems of this type can be reduced by means of a simple technique to problems

for the determination of weak (generalized) solutions of ordinary initial boundary-
value problems with discontinuous coefficients, see [21, pp. 224-232]. This fact will
be used for the analysis of Direct Problem 2.3.1.

2.3. Main results. Suppose that the functions r, ν, j, f , the constant p and the
initial data h0, u0, u1 in Direct Problem ?? enjoy the properties

(a) r, ν, j, f are supposed to be piecewise smooth functions with jumps at the
points zm : −l < z1 < z2 < · · · < zm < l; 0 < r0 ≤ r(z) ≤ r1 < ∞,
0 < ν0 ≤ ν(z) ≤ ν1 < ∞ and p is a positive number;
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(b) h0 ∈ Cα(Ω), α ∈ (0, 1), h0(±l) = 0, and u0 ∈
o

W
1

2 (Ω), u1 ∈ L2(Ω).

Direct Problem 2.3.1 is solvable.

Theorem 2.3.1 If conditions (a)− (b) are fulfilled, then Direct Problem 2.3.1 has
a weak solution

h(z, t) ∈ o

V 2 (QT ), u(z, t) ∈ o

W
1,1

2 (QT ).

3. An inverse problem for electromagnetoelasticity equations with
partially nonlinear interaction

In this section, following the original work [31], we present the results of the
solution to an inverse problem for a electromagnetoelasticity system in the case of
complete nonlinear interaction of electromagnetic and elastic waves.

3.1. Formulation of an inverse problem. Let us consider one of possible
formulations of inverse problems for the direct problem earlier studied in section 2.
In this section we assume that the free member of equation (2.2.2) has representa-
tion f(z, t) = φ(t)g(z, t), where the function φ is unknown. Let us now formulate
inverse problem which will be studied now.

Inverse Problem 3.1.1 Determine a set of the functions

h : QT → R, u : QT → R, φ : [0, T ] → R

from equations (2.2.1)–(2.1.6) and
∫

Ω

ρ(z)hhzdz = −1
2

∫

Ω

ρzh
2dz = ψ(t), t ∈ [0, T ], (3.1.1)

where ρ ∈ o

W
1

2 (Ω) and ψ : [0, T ] → R are giving functions having sufficient smooth-
ness.

The functions r, ν, g, j are supposed to be smooth functions with possible jumps
in points zm : −l < z1 < z2 < · · · < zm < l, 0 < r0 ≤ r(z) ≤ r1 < ∞,
0 < ν0 ≤ ν(z) ≤ ν0 < ∞; p is a positive number, and

∫

Ω

ρ(z)g(z, t)dz ≥ ρ0 > 0, t ∈ [0, T ]. (3.1.2)

At the points of discontinuity we assume the fulfilment of the transmission condi-
tions (2.2.7)–(2.2.8).

From (3.1.1) we obtain
ψ(t) = W (φ), (3.1.3)

where W : L2(0, T ) 7→ L2(0, T ) is operator defined by formula

W (φ) =
〈utt, ρ〉+

∫
Ω

ν2uzρ
′ dz + pψ∫

Ω
ρg dz

. (3.1.4)

Here u = u(z, t; φ), h = h(z, t; φ), φ = φ(t) are the solution of the inverse problem
and ψ is the additional information (3.1.1).
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3.2. Main results. Now we are ready to formulate and prove our main results.

Theorem 3.2.1 Let φ be a fixed point of the operator W (φ), i. e., φ = W (φ).
Then u, h, φ are a solution of Inverse Problem 3.1. The reciprocal statement is
valid: let u, h, φ be a solution of Inverse Problem 3.1.1, then φ = W (φ).

There is valid the following existence and uniqueness theorem.

Theorem 3.2.2 For sufficiently small values T > 0 Inverse Problem 3.1.1 has a
unique solution, which can be obtained by the method of successive approximations.
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